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Abstract. We present a novel approach to derive indirect global information on the hydroxyl radical (OH), one of the most 

important atmospheric oxidants, using state-of-art satellite trace gas observations (key sinks and sources of OH) and a 

steady-state approximation (SSA). This is a timely study as OH observations are predominantly from spatially sparse field 

and infrequent aircraft campaigns, so there is a requirement for further approaches to infer spatial and temporal information 15 

on OH and its interactions with important climate (e.g. methane, CH4) and air quality (e.g. nitrogen dioxide, NO2) trace 

gases. Due to the short lifetime of OH (~1.0 s), SSAs of varying complexities can be used to model its concentration and 

offer a tool to examine the OH budget in different regions of the atmosphere. Here, we use the well-evaluated TOMCAT 

three-dimensional chemistry transport model to identify atmospheric regions where different complexities of the SSAs are 

representative of OH. In the case of a simplified SSA (S-SSA), where we have observations of ozone (O3), carbon monoxide 20 

(CO), CH4 and water vapour (H2O) from the Infrared Atmospheric Sounding Interferometer (IASI) on-board ESA’s MetOp-

A satellite, it is most representative of OH between 600 and 700 hPa (though suitable between 400–800 hPa) within ~20 % 

of TOMCAT modelled OH. The same S-SSA is applied to aircraft measurements from the Atmospheric Tomography 

Mission (ATom) and compares well with the observed OH concentrations within ~30 % yielding a correlation of 0.78. We 

apply the S-SSA to IASI data spanning 2008–2017 to explore the global long-term inter-annual variability of OH. Relative 25 

to the 10-year mean, we find that global annual mean OH anomalies ranged from -3.1 % to +4.4 %, with the largest spread in 

the tropics between -7.0 % and +7.7 %. Investigation of the individual terms in the S-SSA over this time period suggests that 

O3 and CO were the key drivers of variability in the production and loss of OH. For example, large enhancement in the OH 

sink during the positive 2015/2016 ENSO event was due to large scale CO emissions from drought induced wildfires in 

South East Asia). The methodology described here could be further developed as a constraint on the tropospheric OH 30 

distribution as further satellite data becomes available in the future. 
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Introduction 

The hydroxyl radical (OH) is a key species in atmospheric chemistry as it largely defines the oxidation capacity of the 

troposphere, and therefore the lifetimes of many different species. Key species controlled by OH include important 

greenhouse gases (e.g. methane, CH4), ozone-depleting substances (e.g. hydrochlorofluorocarbons), as well as other short-35 

lived anthropogenic and natural pollutants (e.g. volatile organic compounds (VOCs), nitrogen oxides (NOx) and carbon 

monoxide (CO)) (Lelieveld et al., 2016). The importance of OH to tropospheric oxidation capacity was recognised in the 

early 1970s (Levy, 1971) and has been subject to many scientific investigations since, especially in relation to the lifetime of 

CH4 (McNorton et al., 2016; Rigby et al., 2017; Turner et al., 2019). A better understanding of the spatial and temporal 

distribution of OH, the primary sink of CH4, would aid the interpretation of recent trends in CH4, such as the 2000–2007 40 

concentration stabilisation period (Turner et al., 2019).  

 

The primary source of OH in the remote troposphere is the photolysis of ozone (O3) by ultraviolet (UV) radiation (< 330 nm 

wavelength). This forms O(1D) which then reacts with water vapour (H2O) to form OH (Lelieveld et al., 2016): 

𝑂3 + ℎ𝑣 (𝜆 < 330 𝑛𝑚) → 𝑂(1𝐷) + 𝑂2                                                                                                                                                     (1) 45 

𝑂(1𝐷) + 𝐻2𝑂 → 2𝑂𝐻                                                                                                                                                                                    (2) 

The OH radical formed is very reactive due to the unpaired electron on the oxygen atom. After formation, the OH radicals 

attack reduced and partly oxidised gases, removing them from the atmosphere and forming peroxy radicals (e.g. 

hydroperoxyl radical, HO2). The peroxy radicals can go on to form peroxides and participate in many other atmospheric 

chemistry reactions (e.g. ozone formation) and can also go on to reform OH (Lelieveld et al., 2016). 50 

 

Direct in situ measurements of OH are scarce due to its very short lifetime, ~1 second in the daytime, and low abundance; 

the global tropospheric mean OH concentration is around 1 ×106 molecule cm-3 (Lelieveld et al., 2016). Such measurements 

are limited to field campaigns at specific locations (Stone et al., 2012) and aircraft missions e.g. NASA’s Atmospheric 

Tomography mission (ATom) (Wofsy et al., 2018; Brune et al., 2020). There has consequently been a demand for indirect 55 

methods to infer global-scale OH. An established method is to use the methyl chloroform (CH3CCl3, MCF) concentrations to 

derive a global mean OH concentration by using inverse modelling which exploits the fact that sources of MCF are well 

known and that its main sink is reaction with OH (Lovelock, 1977; Singh, 1977; Prinn et al., 1992). This method has been 

used to study the temporal variability of OH (Montzka et al., 2011; Prinn et al., 2005). The accuracy of this method depends 

on accurate estimates of MCF emissions. MCF production is regulated under the legislation initiated by the 1987 Montreal 60 

Protocol and therefore has seen a sharp decline in abundance since the mid-1990s, which will reduce the viability of this 

method, leading to new methods and tracers being sought (Huang and Prinn, 2002; Liang et al., 2017; Rigby et al., 2017). 
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However, the above-mentioned MCF method is unable to provide spatial information on OH. In the last two decades, there 

has been an increasing wealth of tropospheric satellite data, providing information on the spatial and temporal variability of 65 

atmospheric species, but not OH (Streets et al., 2013). These atmospheric composition data are global in extent and now 

span more than a decade so have the potential to provide information to infer a global OH distribution and its variation over 

time. Presently, there are limited examples of the use of satellite data to infer global OH. In a recent study, Wolfe et al. 

(2019) used satellite formaldehyde observations and budget to calculate remote tropospheric column OH, developing the 

method using aircraft data from ATom to establish formaldehyde production/loss and OH concentrations.  70 

 

To exploit satellite data here, we use a simplified steady-state approximation; steady state is an appropriate assumption due 

to the very short daylight lifetime of OH and the simplification is described in Sect. 2 below. Some studies have thus far used 

steady-state approximations to calculate OH from in situ surface data at field sites e.g. Eisele (1996) at Mauna Loa 

Observatory, Savage et al. (2001) and Smith et al. (2006) at the Mace Head Atmospheric Research Centre, Ireland, Creasey 75 

et al. (2003) at Cape Grim in the Southern Ocean, and Slater et al. (2020) in central Beijing. However, there is also the 

potential for these approximations to be applied to satellite data in a global context. The use of the steady-state 

approximations has varied in success. Eisele (1996) found that the comparison between observed and calculated OH 

depended on which air mass was present, with free tropospheric air masses showing better agreement than air masses from 

the boundary layer. Savage et al. (2001) found a good correlation between measured and calculated OH, but a steady-state 80 

overprediction of around 30 %. Models using only simplified chemistry have been shown to capture the chemistry of 

unpolluted regions. Sommariva et al. (2004) used a ‘detailed’ and ‘simple’ box-model to study OH in unpolluted marine air 

at Cape Grim in the Southern Hemisphere (SH). The ‘simple’ box-model based only on CO, CH4 and inorganic reactions, 

and agreed within 5–10 % of the ‘detailed’ box-model that also contained non-methane hydrocarbons (NMHCs). The models 

over-estimated the measured OH by 10–20 %.  85 

 

OH reactivity (OHR), the inverse of OH lifetime, is also measured in the field to provide additional information on the 

tropospheric oxidation capacity and abundance of the OH radical. OHR can be measured in situ along with trace gas 

concentrations during field campaigns e.g. aircraft campaigns such as NASA’s ATom (Wofsy et al., 2018). These OHR 

observations are commonly compared to OHR calculated by summing individual sink terms using measured reactant 90 

concentrations multiplied by their respective reaction rate co-efficients with OH (Yang et al., 2016). However, a large 

number of OHR field campaigns have shown that there is often a substantial difference between observed in situ and 

calculated OHR, known as the “missing” reactivity (Ferracci et al., 2018). This “missing” reactivity can account for as much 

as 20 % (usually outside the OHR uncertainty range) to 80 % of the observed OHR (Yang et al., 2016). There are many 

proposed reasons for this “missing” reactivity, such as short-lived VOCs that were not measured (Kovacs et al., 2003) or in 95 

the rainforests some mixture of unidentified biogenic emissions and photooxidation products (Edwards et al., 2013; Nölscher 

et al., 2016).  
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An improved understanding of OH temporal variation is vital to understanding key aspects of atmospheric chemistry, such as 

interannual to decadal variability in methane (Turner et al., 2019; Zhao et al., 2020). Studies using MCF observations in 100 

combination with box-model analyses show similar annual OH anomalies between 1995 and 2010, with a broadly negative 

anomaly of -6 to 0 % between 1995 and 1999, a positive anomaly of 0 to 6 % between 1999 and 2007 and a negative 

anomaly of -5 to 0 % between 2007 and 2010 (Montzka et al., 2011; Rigby et al., 2017; Turner et al., 2017; Patra et al., 

2021). After 2010, the results of such studies differ with some showing consistently negative anomalies of -4 to 0 % between 

2010 and 2018 (Rigby et al., 2017; Turner et al., 2017) and others showing some positive anomalies in this period, for 105 

example in the range of 0 to 4 % between 2010 and 2015 (Naus et al., 2019; Patra et al., 2021). Studies using chemical 

transport models are not consistent with those using MCF observations. He et al., (2020) found negative anomalies of -5 to 0 

% between 1995 and 2005 and then positive anomalies of 0 to 4 % between 2005 and 2017. A study by Zhao et al., (2020) 

found a multi-model mean increase of 0.7 ×105 molecule cm-3 between 1980 and 2010, equivalent to around 0.1–0.5 % yr-1, 

with the greatest rate of increase in the final decade (2000–2010). The OH increase from 2000–2010 was predominantly due 110 

to that in the primary production term (O(1D) + H2O) though also to a decrease in the CO sink term (OH + CO). Model 

studies further show OH interannual variability to be influenced by the El Niño-Southern Oscillation (ENSO), with low OH 

concentrations being associated with El Niño years and high OH concentrations with La Niña years (Zhao et al., 2020; 

Anderson et al., 2021). 

 115 

Here, we use output data from the TOMCAT 3-D chemical transport model to explore the validity of OH steady-state 

approximations in the troposphere. A simplified steady-state approximation is then applied to observations of O3, CO, CH4 

and H2O mid-tropospheric concentrations retrieved from observations by the MetOp satellite in 2010 and 2017. This 

calculated satellite OH is then compared to OH from TOMCAT using full chemistry and ATom observations. Finally, the 

simplified approximation is applied to MetOp data over a 10-year period (2008–2017) to infer the temporal variability in 120 

OH. Section 2 describes how steady-state approximations, TOMCAT model, aircraft and satellite data are employed in this 

study. Section 3 presents the results and discussion. Section 4 summarises our conclusions.  

2 Methods  

2.1 OH steady-state approximations 

Due to the short lifetime of OH, a steady-state approximation can be used to model its concentration. The approximation can 125 

be defined as Eq. (3): 

[𝑂𝐻] 𝑆𝑡𝑒𝑎𝑑𝑦 𝑆𝑡𝑎𝑡𝑒 =  
𝑘𝐴+𝐵[𝐴][𝐵]+ . . . +𝑗𝐶[𝐶]+ . . .

∑ 𝑘𝐷[𝐷]+ . . .
                                                                                                                               (3) 
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where the numerator of the expression represents a sum of the source terms. kA+B is the reaction rate constant of A and B to 

form OH and jC is the photolysis co-efficient of C to form OH. The denominator represents a sum of the sink terms. kD is the 

reaction rate constant of D and OH, where D represents an individual sink species. The accuracy of the approximation 130 

depends partly on the number of source and sink terms which can be included. This, in turn, depends on the availability of 

observations to provide a constraint for each of those terms.  

 

Here, we use three steady-state approximations of different complexity, summarised in Supplementary Table S1. The most 

complex is referred to as the full chemistry steady-state approximation (FC-SSA) and contains the largest number of source 135 

and sink terms, capturing the most comprehensive tropospheric chemistry, with 26 source terms and 51 sink terms. The 

second most complex is based on a steady-state approximation in Savage et al. (2001) (Sav-SSA) and contains 5 source and 

12 sink terms. Lastly, we propose a simplified steady-state approximation (S-SSA) containing 1 source term (based on Eq. 

(1) and Eq. (2)) and 3 sink terms (based on the reaction of OH with CH4, CO and O3). The S-SSA allows OH to be derived 

using only the main tropospheric source and sinks, that can be directly observed by satellite. We adopt the S-SSA as Eq. (4):  140 

[𝑂𝐻] 𝑆𝑡𝑒𝑎𝑑𝑦 𝑆𝑡𝑎𝑡𝑒 =  

2𝑗1𝑘1[𝑂3][𝐻2𝑂]
𝑘2[𝑁2] +  𝑘3[𝑂2]

𝑘4[𝐶𝐻4] +  𝑘5[𝐶𝑂] + 𝑘6[𝑂3]
                                                                                                                               (4) 

where j1 is the photolysis co-efficient for O3 → O(1D) + O2, k1 is the reaction rate constant for O(1D) + H2O, k2 and k3 are the 

collisional relaxation rate constants with respect to N2 and O2, k4, k5 and k6 are the rate constants for reaction of OH with 

CH4, CO and O3, respectively. The expression implicitly assumes a steady state for the production and relaxation of O(1D).  

2.2 OH  reactivity  145 

OHR, the denominator of Eq. (3), can be directly observed or calculated using a model and/or observed species. The 

accuracy of an OHR calculation is similarly dependent on the number of sink terms which can be included and the 

availability of requisite observations. In principle, examination of OHR measurements co-located with those of [OH] could  

allow steady-state approximations for OH sources and sinks to be evaluated separately. We adopt the denominator of Eq. (4) 

as a simplified expression for OHR as Eq. (5): 150 

[𝑂𝐻𝑅] =  𝑘4[𝐶𝐻4] + 𝑘5[𝐶𝑂] + 𝑘6[𝑂3]                                                                                                                                                 (5)  

2.3 Model and observations 

2.3.1 TOMCAT 3-D model 

In this study we use the 3-D global chemical transport model TOMCAT (Chipperfield, 2006) at a 2.8° × 2.8° resolution with 

31 vertical levels between the surface and 10 hPa. The model is coupled with the Global Model of Aerosol Processes 155 

(GLOMAP) to calculate aerosol microphysics (Mann et al., 2010). The model is forced by meteorological reanalyses (ERA-

Interim) from the European Centre for Medium-Range Weather Forecasts (ECMWF) (Dee et al., 2011). The tropospheric 
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chemistry scheme is described in Monks et al. (2017), with the main updates as follows: anthropogenic and natural surface 

emissions from the Coupled Model Intercomparison Project Phase 6 (CMIP6) for NOx, CO and VOCs (Feng et al., 2020); 

fixed annual biogenic emissions from the Chemistry Climate Model Initiative (CCMI) (Morgenstern et al., 2017); biomass 160 

burning emissions from the Global Fire Emissions Database (GFED) version 4 (van der Werf et al., 2017); and CH4 scaled to 

a best estimate based on the 2010 globally averaged surface CH4 value from NOAA (Dlugokencky, 2020). The model 

simulation was run for 2010 and 2017, with 6 months of spin up in each case. The simulation was sampled daily at 9:30 am 

local time globally to match the MetOp daytime overpass time. 

 165 

Monks et al. (2017) investigated TOMCAT CO, O3 and OH and showed that the model is able to capture the main seasonal 

and spatial features of CO and O3. TOMCAT has a slightly higher global mean tropospheric OH concentration (1.08 ×106 

molecule cm-3) than inferred OH observations from MCF e.g. 0.94 ± 0.1 ×106 molecule cm-3 by Prinn et al. (2001). 

TOMCAT has a similar or lower global mean tropospheric OH concentration than multi-model values from several 

intercomparison studies e.g. 1.08 ± 0.6 ×106 molecule cm-3 from the POLARCAT Model Intercomparison Project (POLMIP) 170 

or the multi-model mean of 1.11 ± 0.2 ×106 molecule cm-3 from 16 Atmospheric Chemistry and Climate Model 

Intercomparison Project (ACCMIP) models (Naik et al., 2013). In terms of vertical distribution of OH, in comparison with 

OH data from Spivakovsky et al. (2000) (MCF method) and the multi-model mean OH from the ACCMIP project (Naik et 

al. 2013), TOMCAT tends to show higher OH at the surface up to 700 hPa and lower OH above 700 hPa.  

2.3.2 Satellite observations  175 

We use satellite observations for 2010 and 2017 from the MetOp-A satellite launched by EUMETSAT in 2006. MetOp-A is 

in a polar sun-synchronous orbit which crosses the equator at ~9:30 (day overpass) and 21:30 (night overpass) giving global 

earth coverage twice a day (Clerbaux et al., 2009). Here, we use height-resolved distributions of CO, CH4, O3 and H2O 

retrieved from MetOp-A observations by schemes developed by the Rutherford Appleton Laboratory (RAL). The O3, CO 

and H2O retrievals are from the extended version of RAL’s Infrared and Microwave Sounding (IMS-extended) scheme, 180 

which co-retrieves temperature profiles, cloud and surface properties, other trace gases and aerosols and is documented in the 

supplement of Pope et al. (2021). The CH4 data were produced by an improved version (v2.0) of RAL’s methane retrieval 

scheme (Siddans et al., 2020) developed for the Infrared Atmospheric Sounding Interferometer (IASI) on MetOp. The 

original IASI methane scheme (v1.0) was described in Siddans et al. (2017). For the IMS-extended scheme, as well as the 

IASI methane scheme, retrieved profiles are output at the locations of IASI soundings. IASI is a nadir-viewing thermal 185 

infrared Fourier Transform Spectrometer, with a spectral range from 645 to 2760 cm -1 (Clerbaux et al., 2009). It samples a 

swath width of 2200 km by scanning a set of four fields of view across-track. At nadir, these are circular with 12 km 

diameter, occupying a square 50 km × 50 km (3.3° × 3.3°). For the study of OH temporal variation between 2008 and 2017, 

MetOp-A data sub-sampled both temporally (1 in 10 days) and spatially (1 in 4 pixels) were available. Supplementary Figs. 

S1 and S2 show good agreement between the sub-sampled and fully sampled satellite data in a zonal average when 190 
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compared in 2010 and 2017, with an average monthly correlation coefficient in latitudinal structure of 0.89 and 0.85, 

respectively.  

 

Profiles of H2O, O3 and CO, along with temperature, are represented on a set of 101 levels in the IMS extended scheme. For 

H2O, information from IASI and the two microwave sounders (Microwave Humidity Sounder (MHS) and Advanced 195 

Microwave Sounding Unit (AMSU-A)) is sufficient to resolve a number of independent layers between the surface and 200 

hPa, with degrees of freedom of signal (DOFS) being typically ~10. Profiles of H2O (and temperature) produced from 

Metop-A by the IMS core scheme have been validated against radiosondes in ESA’s Climate Change Initiative (European 

Space Agency, n.d.) and found to have a systematic bias of ~10%. For CO, on the other hand, measurement information 

(exclusively from IASI) is sufficient to retrieve only one independent layer with averaging kernels which centre on the mid 200 

troposphere ~600 hPa with a full width half medium (FWHM) from ~300–900 hPa, as seen in Figs. S3 and S4. Validation of 

the IMS-extended CO retrievals, through indirect comparisons using the Copernicus Atmospheric Monitoring Service 

(CAMS) in which averaging kernels were applied (see the supplement of Pope et al. (2021)), found uncertainty in retrieved 

CO to be approximately 10%. For O3, averaging kernels peak at a number of levels spanning the troposphere and 

stratosphere with DOFs generally ranging between 3.0 and 4.0. The lowest peak is seen in Figs. S3 and S4 to be around ~600 205 

hPa with FWHM from ~350–900h Pa. When compared with ozonesondes (Supplementary Sect. S3), O3 retrieved in the mid-

troposphere by the IMS-extended scheme is found to differ systematically by up to 20 %. The RAL v2.0 IASI scheme 

retrieves CH4 on a set of coarsely spaced levels, taking as input temperature profiles and surface spectral emissivity pre-

retrieved from the same soundings by IMS. Output files also include layer-average mixing ratios and their corresponding 

averaging kernels, as shown in Figs. S3 and S4. The number of DOFS is greater than 2 in the tropics and drops to below 2 in 210 

polar latitudes; the surface–450 hPa layer average is well resolved from layers above. Examples of averaging kernels for 

H2O, CH4, CO and O3 are shown in Supplementary Sect. S2 (Figs. S3 and S4). 

 

With the exception of H2O, retrieval sensitivity is seen in Figs. S3 and S4 to decrease in the lowest atmosphere as 

temperature approaches that of the surface and surface-air temperature contrast on which sensitivity depends diminishes.  215 

However, in all four cases, averaging kernels for layers centred in the mid-troposphere are well behaved, with peaks around 

600–700 hPa and FWHMs contained within the free troposphere, as appropriate for the focus of this study. For 

straightforward comparison with TOMCAT simulations, use of retrieved MetOp data is further restricted to the 400–800 hPa 

and 600–700 hPa layers, where averaging kernels peak, rather than applying the averaging kernels to model profiles.    

 220 

Uncertainty on [OH] calculated with the S-SSA using satellite data is estimated from the systematic errors on the four 

retrieved species, as described in Supplementary Sect. S5, to be ~23% (Fig. S6).   
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2.3.3 ATom observations 

The ATom mission observed many atmospheric variables, including OH and OHR (Wofsy et al., 2018). NASA’s DC-8 

aircraft sampled the atmosphere between 0.2–12 km altitude during four campaigns between 2016–2018, sampling both 225 

hemispheres over the Pacific and Atlantic Oceans. We use ATom observations of OH, OHR, CO, CH4, H2O and j1. We use 

data from all four campaigns between and 08:00–11:00 local solar time, to compare with the 09:30 MetOp overpass time and 

the 600–700 hPa pressure range, where the S-SSA agrees best with the full chemistry (see Sect. 3.1). The data are also 

filtered to remove measurements influenced by stratospheric air (O3/CO > 1.25) or biomass burning (acetonitrile 

concentration > 200 ppt), as in Travis et al. (2020). The OH and OHR observations used in this study were made by the 230 

ATHOS instrument (Faloona et al., 2004; Brune et al., 2020). The uncertainty on the OH observations from the ATHOS 

instrument at the 2σ confidence level is ± 35 % and the limit of detection of the OH observations is 0.018 pptv. The 

uncertainty on the OHR observations from the ATHOS instrument at the 2σ confidence level is ± 0.8 s-1. The NOAA Picarro 

instrument provides CH4 and CO observations, with uncertainties of ± 0.7 ppbv and ± 8.9 ppbv, respectively (Karion et al., 

2013). The Diode laser hygrometer (DLH) provides H2O observations with an uncertainty of ± 5 % (Podolske et al., 2003). 235 

The NOAA-NOy O3 instrument provides O3 observations with an average uncertainty of ± 2.0 ppb (Ryerson et al., 2000). 

The CCD Actinic Flux Spectroradiometers (CAFS) instrument provides j1 observations, with an uncertainty of ± 20 % 

(Shetter and Müller, 1999).  

3 Results & Discussion 

3.1 Application of the simplified steady-state approximation  240 

3.1.1 Application to model data  

We use the TOMCAT output of CO, CH4, O3 and H2O, for 2010 in the S-SSA of OH to determine the validity of this 

approximation in different regions of the troposphere. Zonal mean [OH] calculated with the S-SSA and modelled TOMCAT 

[OH] are compared in Fig.1. Table 1 shows the differences to be very large (>90 %) between global mean TOMCAT OH 

and TOMCAT S-SSA OH at pressures <400 hPa (i.e. upper troposphere and stratosphere). Nearer the surface (>800 hPa) S-245 

SSA overestimates the global mean by 40–50 %.   

 

The mid tropospheric region (400–800 hPa) shows the best agreement with a S-SSA global mean underestimate of ~30 %. In 

the surface region, the TOMCAT S-SSA OH show much greater peak values than the TOMCAT OH, with values of 10.7 

×106 molecule cm-3 (Jan) and 13.7 ×106 molecule cm-3 (Jun) for TOMCAT S-SSA OH, compared to values of 5.8 ×106 250 

molecule cm-3 (Jan) and 9.3 ×106 molecule cm-3 (Jun) for TOMCAT OH. In the mid-troposphere, there are peak values of 

9.1 ×106 molecule cm-3 (Jan) and 7.1 ×106 molecule cm-3 (Jun) for TOMCAT S-SSA OH, compared to peak values of 5.6 

×106 molecule cm-3 (Jan) and 8.3 ×106 molecule cm-3 (Jun) for TOMCAT OH. Within this mid-tropospheric region, the 600–
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700 hPa layer is further investigated, as it shows better agreement in the zonal mean structure and global mean than the 

larger pressure region, as shown in Table 1. TOMCAT output from 2017 was also applied to the S-SSA with similar results, 255 

shown in Supplementary Sect. S6 (Fig. S7). We therefore selected the pressure region 600–700 hPa for investigation because 

of the best agreement between TOMCAT OH and TOMCAT S-SSA OH in this region. OH in this region contributes to ~15 

% of mean tropospheric OH. Diagnosis of the model output shows the influence of OH in this region to methane oxidation is 

slightly larger, with a contribution of ~19 % of methane loss weighted OH.  

 260 

 

Figure 1: Comparison of TOMCAT OH and S-SSA OH in 2010: (a) TOMCAT OH January, (b) TOMCAT S-SSA OH January, 

(c) TOMCAT OH June, (d) TOMCAT S-SSA approximation OH June. The dashed lines represent the proposed area of best 

agreement, 600–700 hPa. The numbers on the right of each plot represent the mass-weighted mean OH in ×106 molecule cm-3 of 

the region shown by the dotted lines (from top to bottom): < 400 hPa, between 400–800 hPa, between 800 hPa and the surface. 265 
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Table 1: Comparison of global mean TOMCAT OH and S-SSA OH for different pressure ranges. Percentage difference relative to 

the TOMCAT OH mean given in brackets.   275 

 

In Supplementary Sect. S7 we apply TOMCAT model data to two more complex steady-state approximations, FC-SSA and 

Sav-SSA to demonstrate which atmospheric species additional to H2O, O3, CO and CH4 are key to OH production and 

removal in the pressure ranges, <400 hPa and >800 hPa. We find the reaction of nitric oxide (NO) and the hydroperoxyl 

radical (HO2) to be an important missing source at pressures <400 hPa and a range of sink reactions to be important close to 280 

the surface (pressures >800 hPa), including nitrogen dioxide (NO2), dimethyl sulphide (DMS), hydrogen (H2), hydrogen 

peroxide (H2O2), NO, sulphur dioxide (SO2), formaldehyde (HCHO) and a combination of hydrocarbons (e.g. alkanes and 

alkenes). However satellite data for many of these species is not available in the relevant pressure region, and for others e.g. 

HCHO, NO2 and SO2 it is not available from a similar instrument to the species in the S-SSA which would give problems, 

for example, in combining observations with different vertical resolutions at different locations and times of day. 285 

3.1.2 Application to satellite data  

We apply satellite retrieved trace gas data and model j1 for 2010 to estimate [OH] using the S-SSA in the layer of interest, 

between 600–700 hPa. The satellite profiles interpolated to this layer are applied on an individual sounding basis for the 

daytime (~9:30 am local time) overpass. The [OH] estimates are then gridded onto the model grid for comparisons. Figure 2 

shows the satellite S-SSA [OH] for 2010. The global [OH] average ranges from 2.1 ×106 molecule cm-3 (January) to 3.0 ×106 290 

molecule cm-3 (July). The seasonal variation is clear, with the higher [OH] values e.g. above 5.0 ×106 molecule cm-3 mostly 

in the SH during the summer (December-February), with a grid-box maximum value of 11.4 ×106 molecule cm-3. These 

larger [OH] concentrations in the tropical region, between 30° S–30° N, appear from March to May, with a grid-box 

maximum of 11.6 ×106 molecule cm-3. For June to August the higher [OH] values are mostly in the Northern Hemisphere 

(NH), with a grid-box maximum of 32.6 ×106 molecule cm-3. The higher [OH] values are present around the equator and 295 

sub-tropics in September to November, with a grid-box maximum of 14.4 ×106 molecule cm-3.  

 S-SSA OH average – TOMCAT OH average (×106 molecule cm-3) 

Pressure range January June 

< 400 hPa -2.68 (-93 %) -2.93 (-92 %) 

400–800 hPa -0.81 (-32 %) -0.94 (-29 %) 

> 800 hPa 1.68 (55 %) 1.57 (38 %) 

600–700 hPa -0.81 (-29 %) -0.87 (-24 %) 
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Figure 2: Satellite S-SSA OH (×106 molecule cm-3) averaged for the 600–700 hPa layer in all months of 2010. Global mean OH 

values (×106 molecule cm-3) for this region are labelled for each month. 

 300 

Figure 3 shows a comparison of TOMCAT, TOMCAT S-SSA, TOMCAT FC-SSA and satellite S-SSA [OH] in January and 

June 2010. In both months the four estimates are seen to have very similar geographical structures. As expected, TOMCAT 

[OH] and TOMCAT FC-SSA [OH] show spatial patterns and global averages which are particularly similar (<4 % 

difference). This good agreement indicates that the use of monthly model data in the steady-state expression matches well 

with the numerical integration scheme inside the model. The TOMCAT and satellite S-SSA distributions also agree well in 305 

both months. Their agreement is closer in January than June, with comparable peaks over NW Australia and S Africa with a 

TOMCAT [OH] grid-box maximum of 9.7 ×106 molecule cm-3 and a satellite [OH] grid-box maximum of 10.7 ×106 

molecule cm-3. The TOMCAT and satellite S-SSA January global average [OH] values are 2.65 and 2.13 ×106 molecule cm-

3, respectively, so are consistent to ~18 %  In June 2010, TOMCAT and satellite S-SSA distributions have peaks over S Asia 

and N Africa. Over SE Asia, the TOMCAT and satellite peaks are 15 and 12 ×106 molecule cm-3, respectively, and over N 310 
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Africa they are 15 and 8 ×106 molecule cm-3, respectively. The TOMCAT distribution also has a peak over N America which 

is not captured by the satellite S-SSA. The TOMCAT and satellite S-SSA June global average [OH] values are 3.47 and 2.68 

molecule cm-3, respectively, so are consistent to ~23 %. In summary, the monthly mean geographical distributions and global 

averages derived using the S-SSA (using TOMCAT/satellite data) agree well with those from TOMCAT and TOMCAT FC-

SSA, indicating the S-SSA offers a useful approach to investigate [OH] behaviour globally in the 600–700 hPa layer. The 315 

monthly-mean distributions of satellite-derived S-SSA [OH] agree well with TOMCAT S-SSA although values are generally 

lower, indicating some inconsistency between TOMCAT and satellite in the distributions of H2O, O3, CO and/or CH4. The 

same analysis was applied to data from 2017 (Fig. S8) and similar results obtained.  

3.1.3 Application to aircraft data 

To further assess the robustness of the S-SSA, we used OH, CH4, CO, O3, H2O and j1 observations from four ATom 320 

campaigns. Figure 4 shows a comparison between [OH] observed by ATom (OH-obvs) and as calculated from ATom H2O, 

O3, CO and CH4 observations using the S-SSA (OH-calc) where ATom data for all species were available. Across all four 

ATom campaigns, OH-calc is biased by -27.8 % with respect to OH-obvs. This % bias is similar to the uncertainty on OH-

obvs of ~35 % (Brune et al., 2020). For the four individual campaigns, the % bias is persistently negative, ranging from -23.6 

to -50.7 %. Across the four campaigns the Pearson’s correlation co-efficient is 0.78, and for the four individual campaigns, 325 

the correlation ranges from 0.51 to 0.85.  

 

Figure 5 shows a comparison between zonally-averaged OH-obvs and OH-calc. The left panels show that for OH-obvs, the 

higher values are predominantly found closer to the equator although exceptions exist e.g. around 45°N in ATom-1. The 

right panels show that for the majority of latitudes, OH-obvs is larger than OH-calc across all four campaigns, with a few 330 

exceptions, mostly in ATom-2 and 4. The deviations range from -9.7 ×106 molecule cm-3 to 4.0 ×106 molecule cm-3. 

Generally, they are smallest between 30° S and 90° S, corresponding to the low OH-obvs and OH-calc values in this region. 

They are higher in 30° S–30° N and 30°–90°N, corresponding to generally higher OH-obvs and OH-calc values near the 

equator and some large values in the NH mid-latitudes.  

 335 

As the normalised mean bias between OH-obvs and OH-calc is comparable to the uncertainty on the OH-obvs and the 

datasets are well correlated, this analysis of the ATom campaigns provides further justification that the use of the S-SSA to 

further study OH in this pressure range is robust.   

 

  340 
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Figure 3: 2010 OH comparison in the 600–700 

hPa layer: (a) TOMCAT January, (b) 

TOMCAT June, (c) TOMCAT FC-SSA 

January, (d) TOMCAT FC-SSA June, (e) 

TOMCAT S-SSA January,  (f) TOMCAT S-345 
SSA June, (g) Satellite S-SSA January and (h) 

Satellite S-SSA June in units of ×106 molecule 

cm-3. Global mean OH values (×106 molecule 

cm-3) for this atmospheric region are given 

below each panel.   350 
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Figure 4: Comparison between OH-calc and OH-obvs. The left panel shows a combination of ATom-1, ATom-2, ATom-3 and 

ATom-4. The right four panels show the data split into the individual campaigns. ATom observations are filtered for 600–700 hPa 

and 08:00–11:00 LT. All data is in units of ×106 molecule cm-3. Data points in orange are excluded from the analysis, either as an 

outlier ( > mean + 3.0 standard deviations) or below the limit of detection of the ATHOS instrument (0.018 pptv or 0.31 ×106 355 
molecule cm-3) shown by the orange line.. Pearson’s correlation co-efficient (r), the mean bias (calculated from OH-calc – OH-

obvs) and the normalised mean bias (% with respect to OH-obvs) are displayed in the top left corner of each panel.  

 

Figure 6 shows OH-obvs overlayed onto a satellite derived [OH] field averaged across the corresponding days in 2017. 

There are examples of good agreement between the satellite and OH-obvs in some peak [OH] regions, e.g. off the western 360 

coast of Mexico between the equator and 30° N in ATom-1, and also low [OH] regions, e.g. over the North Atlantic ocean in 

ATom-2. However, there are also examples of poor agreement, e.g. high values in OH-obvs near Alaska and low values in 

the satellite OH in ATom-3 and 4. Across the four campaigns, the correlation co-efficient ranges from 0.15 to 0.75, and the  

bias of satellite with respect to ATom ranges from -59.2 % to -32.6 %. Figure 6 highlights the sparse nature of the ATom 

data in comparison to the satellite [OH] field. Figure 7 shows a comparison between OH-obvs and the nearest value from the 365 

averaged satellite [OH] field (OH-sat). The data is coloured by latitude and, as in Fig. 6, indicates OH-sat to be negatively 

biased with respect to OH-obvs at northern mid–high latitudes, but to a lesser extent at lower latitudes. Across the four 

campaigns, the values at northern mid–high latitudes (30°–90° N) and the values at lower latitudes (90° S–30° N) show 

similarly high correlation co-efficients of 0.68, with a small difference of ~5 % for the lower latitudes, and a much larger 

difference of ~72 % for the higher latitudes. 370 
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Figure 5: OH-calc and OH-obvs comparison. Left panels show latitude-averaged OH (ppt) with error bars of 35 %. Right panels 

show latitude-averaged OH difference between OH-calc and OH-obvs (calc – obvs) with the mean difference (MB) labelled for 3 

different latitude regions marked by the dashed lines (90°–30° S, 30° S–30° N and 30°–90° N). All data is in units of ×106 molecule 375 
cm-3. ATom observations are filtered for 600–700 hPa and 08:00–11:00 LT. 

 

3.2 OH reactivity 

As described in Sect. 2.2, OHR observations can potentially be used to check the denominator of a steady-state 

approximation, in this case a simplified expression of OHR (Eq. (5). Supplementary Sect. S8 (Figs. S12 and S13) discusses 380 

our comparisons between ATom OHR observations (OHR-obvs) and ATom data used in the simplified expression for OHR 

(OHR-calc). Although ~80 % of calculated OHR values fell within the range of measurement uncertainty, the estimated error 

on OHR measurements (0.8 s-1) was too large to find any correlation with calculated OHR (r = -0.02). The bias in calculated 

OHR varied between -57 % to +20 % over the four campaigns and the average bias in calculated OHR (-37 %) over the four 

campaigns (Fig. S13) is compatible with the (-28 %) bias in S-SSA [OH]. Several studies (Thames et al., 2020; Travis et al., 385 
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2020) have quantified “missing OH reactivity” in the boundary layer in detail, however, our analysis of ATom [OH] and 

OHR measurements demonstrates the S-SSA to estimate [OH] with an accuracy of ~30% in the 600-700 hPa layer. 

3.3 OH temporal variation 

Satellite data in conjunction with the S-SSA presented in previous sections provides a mean to examine global [OH] 

temporal variation. We use satellite data produced on a sub-sampled basis from 2008–2017 and the S-SSA, together with 390 

fixed annual model j1 distributions from the TOMCAT model for a fixed year (2010). Figure 8 shows the time series of 

global, NH, SH and tropical (15° S–15° N) OH monthly anomalies with respect to the 2008-2017 mean for each month for 

the 600–700 hPa layer. Similar plots in the supplement show % anomalies for the input species and temperature (Figs. S14–

S18). During this time period the [OH] anomaly varies between around -0.2 and +0.2 ×106 molecule cm-3 for the global, NH 

and SH averages and around -0.4 and +0.6 ×106 molecule cm-3 for the tropical average. Aside from a few exceptions, the 395 

global, NH, SH and tropical average follow a similar pattern. Notable positive anomalies (values given for the tropical band, 

in units of ×106 molecule cm-3) occur in mid-2010 (+0.32), the end of 2012 and beginning of 2013 (+0.57), mid-2015 

(+0.15) and mid-2016 (+0.15). Notable negative anomalies occur in mid-2009 (-0.29), 2011 to mid-2012 (-0.39), end of 

2015 and beginning of 2016 (-0.21) and the end of 2017 (-0.23). Annually, the global annual mean [OH] anomaly ranges 

from -3.1 % to +4.4 % and the tropics anomaly ranges from around -7.0 to +7.7 %. This behaviour is broadly similar to other 400 

studies of [OH] variability using MCF observations and chemistry transport models, which find a range of around -6 to +6 % 

for global [OH] anomaly during this time period (although our assessment is limited to a specific pressure range, so the 

comparison cannot be direct) (Patra et al., 2021). 

 

Figure 9 shows contrasting behaviour of the three sink terms during the time period 2008–2017. It shows that in the 600–405 

s700 hPa layer, CO is the dominant sink term, ranging between 0.20–0.45 s-1, with the CH4 sink having the next largest 

contribution between 0.10–0.15 s-1 and the O3 sink having the smallest contribution at around 0.04 s-1. The comparatively 

large size of the CO sink, indicates that variation in CO is likely to dominate the variation in the total sink term. The CO sink 

is consistently lower in the SH than NH, with largest difference (~0.2 s-1) in the first half of the year. The CH4 and O3 sinks 

show negligible difference between SH and NH, therefore the CO sink will have a lower percentage contribution in the SH. 410 

These findings are consistent with those from aircraft measurements below 3 km in Travis et al. (2020) and from model data 

in the free troposphere in Lelieveld et al., (2016). Satellite CH4 shows a positive trend of 4.5 ppb yr-1 throughout this time 

period (Fig. S16). However, as seen in Fig. 9, when the rate constant is applied, the CH4 sink term shows very little 

variation, with no evidence of the positive trend in CH4 concentrations having a significant impact. The source term 

(numerator of Eq. (4)) varies between 5–15 ×105 molecule cm-3 s-1 for the global, NH and SH averages, while for the tropical 415 

band it ranges between 15–28 ×105 molecule cm-3 s-1. 
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Figure 6: Satellite OH for four periods in 2017 corresponding to A1 to A4 (ATom-1 to ATom-4, 2016-2018) with ATom OH 

observations (OH-obvs) overlayed on top as coloured circles. ATom observations are filtered for 600–700 hPa and 08:00–11:00 LT. 420 
All data is in units of ×106 molecule cm-3. The Pearson’s correlation co-efficient (r), mean bias (calculated from the nearest satellite 

grid cell – OH-obvs) and the normalised mean bias (% with respect to OH-obvs) are displayed at the bottom of each panel. All 

data is in ×106 molecule cm-3.  
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Figure 7: Comparison between OH-obvs and OH-sat (nearest satellite OH value to ATom observation from averaged 2017 satellite 425 
OH grid). The left panel shows a combination of ATom-1, ATom-2, ATom-3 and ATom-4. The right four panels show the data 

split into the individual campaigns. ATom observations are filtered for 600–700 hPa and 08:00–11:00 LT. All data are in units of 

×106 molecule cm-3. Data points in orange are not included in analysis, either as an outlier ( > mean + 3.0 standard deviations) or 

below the limit of detection of the ATHOS instrument (0.018 pptv or 0.31 ×106 molecule cm-3) shown by the orange line. Pearson’s 

correlation co-efficient (r), the mean bias (calculated from OH-sat – OH-obvs) and the normalised mean bias (% with respect to 430 
OH-obvs) are displayed in the top left corner of each panel for 3 different latitude ranges: all latitudes, 90° S–30° N and 30°–90°N, 

respectively. The values are coloured by latitude as shown on the colour bar.  

 

Figure 10 shows the temporal anomaly, relative to the 2008–2017 mean, of the balance between source and sink terms in the 

approximation and the derived OH concentration. The positive anomalies in mid-2010, end of 2012 and beginning of 2013, 435 

mid-2015 and mid-2016 coincide with the positive anomalies in the source term, driven by O3 (O3 anomalies are shown in 

Fig. S18), and smaller or close to zero anomalies in the sink terms. The negative anomalies in mid-2009, 2011 to mid-2012, 

and end of 2017 can be explained by a negative anomaly in the source term, again driven by O3, and a small or close to zero 

anomaly in the sink term. The negative anomalies at the end of 2015 and beginning of 2016 can be explained by a very large 

positive sink term anomaly, despite the large positive source term anomaly. This large positive anomaly in the sink term 440 

corresponds to a large positive anomaly of CO in most latitudes (Fig. S17), with maximum anomaly ~12 % globally and ~20 

% in the tropics. The 2015–2016 El Niño event is the likely cause of this CO anomaly, due to a large increase in global fire 

emissions (Huijnen et al., 2016). As shown in Fig. 10d, the event started at the end of 2014, peaked at the end of 2015 with a 

maximum Multivariate ENSO Index (MEI.v2) value of +2.2, and ended in May 2016 (Liu et al., 2017; NOAA, 2021).  
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 445 

Figure 8: Monthly mean satellite OH anomaly (2008–2017): (a) 15° latitude bins and (b) 3-month average global, NH, SH and 

tropics means. All data is in ×106 molecule cm-3. Anomaly is relative to a 2008–2017 average.  

 

As the combined source term is a dominant driver of OH variability, it is useful to distinguish the relative importance of O3 

and water vapour in driving this variability. To do this, we repeat the source term calculation (numerator in Eq. (4)) but using 450 

a fixed value of O3 or water vapour, respectively. These fixed values are derived from the average value for each month 

across the full 2008–2017 time series. If the source term anomaly time series derived using a fixed water vapour value can 

reproduce the original anomaly time series (i.e. Fig. 10b), this would demonstrate that variability of water vapour is not 

important in comparison to that of O3 or vice versa (Fig. 11). Our results show that when water vapour is fixed (varying O3) 

in the source term anomaly, 67.5 % of the variability (i.e. R2=0.675) in the original source term can be explained on the 455 

global scale (Fig. 11c). When O3 is fixed to a constant monthly value (varying water vapour), the R2 value drops to 0.169 

with only 16.9 % of the variability in the original source term anomaly explained by this time series (Fig. 11b). Therefore, 
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this demonstrates that variations in O3 are the primary driver in the source term and therefore the OH variability using the S-

SSA in this altitude range and time period.   

 460 

 

 

Figure 9: Temporal variability in the components of the S-SSA approximation (2008–2017). Global, NH, SH and tropical average 

time series for: (a) kO3+OH[O3], (b) kCO+OH[CO], (c) kCH4+OH[CH4] and (d) 2j1k1[O3][H2O]/(kN2+O(1D)[N2]+kO2+O(1D)[O2]).  
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 465 

Figure 10. Temporal variability in OH anomaly and anomalies of the numerator (source) and denominator (sink) lines of the 

steady-state approximation in Eq. (4) (2008–2017). Global, NH, SH and tropical average time series for: (a) OH anomaly, (b) 

2j1[O3][ H2O]/(kN2+O(1D)[N2]+kO2+O(1D)[O2] (total source term) anomaly, (c) kCO+OH[CO] + kCH4+OH[CH4] + kO3+OH[O3] (total sink 

term) anomaly and (d) Bimonthly Multivariate ENSO index (NOAA, 2021). Anomalies are relative to a 2008–2017 average. 

https://doi.org/10.5194/acp-2022-79
Preprint. Discussion started: 1 February 2022
c© Author(s) 2022. CC BY 4.0 License.



22 

 

 470 

Figure 11. Global, NH, SH and tropical average time series (2008–2017) for: (a) OH S-SSA source anomaly, (b) OH S-SSA source 

anomaly calculated with fixed monthly O3 concentrations (source fixed-O3) and (c) OH S-SSA source anomaly calculated with 

fixed monthly water vapour concentrations (source fixed-wv). Fixed O3/water vapour calculated as monthly average across the 

time period. Anomalies are relative to a 2008–2017 average. Values in the top right of panel b represent the R2 value between the 

OH S-SSA source anomaly and the source fixed-O3 anomaly and in the top right of panel c represent the R2 values between the 475 
OH S-SSA source anomaly and the source fixed-wv anomaly. All data is in units of ×105 molecule cm-3  s-1.  

4 Conclusions 

Due to its short photochemical lifetime, steady-state approximations are able to represent tropospheric OH concentrations 

well, depending on the complexity of the expression used and the atmospheric pressure range to which they are applied. The 

terms in the steady-state approximation also allow us to quantify components which contribute to the OH budget. A 480 

simplified steady-state approximation (S-SSA) can be constructed which contains terms based on trace gases observed by 

satellite. Results from the TOMCAT 3D chemical transport model show that this should be a good approximation to [OH] in 

the 600–700 hPa layer in terms of magnitude (~20 % underestimate in the global mean [OH] comparison to full chemistry) 
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and spatial distribution. This atmospheric layer is above the boundary layer where [OH] is substantially affected by many 

pollutants which are not measured by satellite and therefore invalidate the S-SSA. We have tested the S-SSA in the 600–700 485 

hPa layer using data from four ATom campaigns and found that it tracked measured [OH] with a correlation of r = 0.78 and 

a mean bias of ~30 %, similar to the 35 % estimated uncertainty on the OH observations. Measurements of OH reactivity 

(OHR) allow the denominator of the S-SSA expression to be considered in addition and found to be consistent with an S-

SSA [OH] accuracy of ~30 % in the 600–700 hPa layer.  

 490 

The S-SSA approach allows us to demonstrate how a multi-year record of satellite observations can be used to examine 

interannual variability in tropospheric [OH]. Using H2O, O3, CO and CH4 data retrieved from MetOp-A observations for 

2008-17 we find the global annual mean [OH] anomaly to range from -3.1 % to +4.4 %. The influence of important terms in 

the OH budget was also derived, demonstrating the balance between the source and sink terms over time. Variation in the S-

SSA OH was found to be determined primarily by the combined source term, driven by O3, and by the CO sink term. In the 495 

tropics, OH variation reflected that of O3 (peaks in 2008, 2010 and the largest in 2013) along with the positive CO anomaly 

associated with the strong El Niño event in 2015/16. Overall, we have demonstrated a novel and robust methodology, using 

satellite observations and a simple steady-state approach, to estimate mid-troposphere [OH], which can complement existing 

methods to measure [OH] (i.e. the limited network of surface sites, infrequent flight campaigns and the MCF-type approach 

to estimate global mean [OH]). Most importantly though, the approach here will provide the scientific community with a 500 

global observational constraint on mid-tropospheric [OH] and help future studies assess the [OH] impacts on important air 

quality (e.g. O3 and NO2) and climate (e.g. CH4) trace gases. 

 

Data availability. The ATom data (Wofsy et al., 2018) is available from: https://daac.ornl.gov/ATOM/campaign/. The 

MEI.v2 data (NOAA, 2021) is available from: https://psl.noaa.gov/enso/mei/. Satellite data was produced from MetOp with 505 

RAL’s extended Infrared and Microwave Sounding scheme and IASI methane scheme (Siddans et al., 2020) are available at 

these locations respectively:  http://homepages.see.leeds.ac.uk/~eemap/RAL_IASI_IMS_DATA/ (follow 

/FULLY_PROCESSED/ for the fully sampled data (2010 and 2017) and /PARTIALLY_PROCESSED/ for the sub-sampled 

data (2007–2018)) and http://dx.doi.org/10.5285/f717a8ea622f495397f4e76f777349d1.  
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